Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Epidemics ; 41: 100635, 2022 Sep 22.
Article in English | MEDLINE | ID: covidwho-2041739

ABSTRACT

BACKGROUND: Social contact survey data forms a core component of modern epidemic models: however, there has been little assessment of the potential biases in such data. METHODS: We conducted focus groups with university students who had (n = 13) and had never (n = 14) completed a social contact survey during the COVID-19 pandemic. Qualitative findings were explored quantitatively by analysing participation data. RESULTS: The opportunity to contribute to COVID-19 research, to be heard and feel useful were frequently reported motivators for participating in the contact survey. Reductions in survey engagement following lifting of COVID-19 restrictions may have occurred because the research was perceived to be less critical and/or because the participants were busier and had more contacts. Having a high number of contacts to report, uncertainty around how to report each contact, and concerns around confidentiality were identified as factors leading to inaccurate reporting. Focus groups participants thought that financial incentives or provision of study results would encourage participation. CONCLUSIONS: Incentives could improve engagement with social contact surveys. Qualitative research can inform the format, timing, and wording of surveys to optimise completion and accuracy.

2.
Elife ; 102021 11 25.
Article in English | MEDLINE | ID: covidwho-1534521

ABSTRACT

Background: Transmission of respiratory pathogens such as SARS-CoV-2 depends on patterns of contact and mixing across populations. Understanding this is crucial to predict pathogen spread and the effectiveness of control efforts. Most analyses of contact patterns to date have focused on high-income settings. Methods: Here, we conduct a systematic review and individual-participant meta-analysis of surveys carried out in low- and middle-income countries and compare patterns of contact in these settings to surveys previously carried out in high-income countries. Using individual-level data from 28,503 participants and 413,069 contacts across 27 surveys, we explored how contact characteristics (number, location, duration, and whether physical) vary across income settings. Results: Contact rates declined with age in high- and upper-middle-income settings, but not in low-income settings, where adults aged 65+ made similar numbers of contacts as younger individuals and mixed with all age groups. Across all settings, increasing household size was a key determinant of contact frequency and characteristics, with low-income settings characterised by the largest, most intergenerational households. A higher proportion of contacts were made at home in low-income settings, and work/school contacts were more frequent in high-income strata. We also observed contrasting effects of gender across income strata on the frequency, duration, and type of contacts individuals made. Conclusions: These differences in contact patterns between settings have material consequences for both spread of respiratory pathogens and the effectiveness of different non-pharmaceutical interventions. Funding: This work is primarily being funded by joint Centre funding from the UK Medical Research Council and DFID (MR/R015600/1).


Infectious diseases, particularly those caused by airborne pathogens like SARS-CoV-2, spread by social contact, and understanding how people mix is critical in controlling outbreaks. To explore these patterns, researchers typically carry out large contact surveys. Participants are asked for personal information (such as gender, age and occupation), as well as details of recent social contacts, usually those that happened in the last 24 hours. This information includes, the age and gender of the contact, where the interaction happened, how long it lasted, and whether it involved physical touch. These kinds of surveys help scientists to predict how infectious diseases might spread. But there is a problem: most of the data come from high-income countries, and there is evidence to suggest that social contact patterns differ between places. Therefore, data from these countries might not be useful for predicting how infections spread in lower-income regions. Here, Mousa et al. have collected and combined data from 27 contact surveys carried out before the COVID-19 pandemic to see how baseline social interactions vary between high- and lower-income settings. The comparison revealed that, in higher-income countries, the number of daily contacts people made decreased with age. But, in lower-income countries, younger and older individuals made similar numbers of contacts and mixed with all age groups. In higher-income countries, more contacts happened at work or school, while in low-income settings, more interactions happened at home and people were also more likely to live in larger, intergenerational households. Mousa et al. also found that gender affected how long contacts lasted and whether they involved physical contact, both of which are key risk factors for transmitting airborne pathogens. These findings can help researchers to predict how infectious diseases might spread in different settings. They can also be used to assess how effective non-medical restrictions, like shielding of the elderly and workplace closures, will be at reducing transmissions in different parts of the world.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious , Adolescent , Adult , Aged , COVID-19/virology , Female , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Young Adult
3.
BMC Med ; 19(1): 271, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1468065

ABSTRACT

BACKGROUND: The effect of contact reduction measures on infectious disease transmission can only be assessed indirectly and with considerable delay. However, individual social contact data and population mobility data can offer near real-time proxy information. The aim of this study is to compare social contact data and population mobility data with respect to their ability to reflect transmission dynamics during the first wave of the SARS-CoV-2 pandemic in Germany. METHODS: We quantified the change in social contact patterns derived from self-reported contact survey data collected by the German COVIMOD study from 04/2020 to 06/2020 (compared to the pre-pandemic period from previous studies) and estimated the percentage mean reduction over time. We compared these results as well as the percentage mean reduction in population mobility data (corrected for pre-pandemic mobility) with and without the introduction of scaling factors and specific weights for different types of contacts and mobility to the relative reduction in transmission dynamics measured by changes in R values provided by the German Public Health Institute. RESULTS: We observed the largest reduction in social contacts (90%, compared to pre-pandemic data) in late April corresponding to the strictest contact reduction measures. Thereafter, the reduction in contacts dropped continuously to a minimum of 73% in late June. Relative reduction of infection dynamics derived from contact survey data underestimated the one based on reported R values in the time of strictest contact reduction measures but reflected it well thereafter. Relative reduction of infection dynamics derived from mobility data overestimated the one based on reported R values considerably throughout the study. After the introduction of a scaling factor, specific weights for different types of contacts and mobility reduced the mean absolute percentage error considerably; in all analyses, estimates based on contact data reflected measured R values better than those based on mobility. CONCLUSIONS: Contact survey data reflected infection dynamics better than population mobility data, indicating that both data sources cover different dimensions of infection dynamics. The use of contact type-specific weights reduced the mean absolute percentage errors to less than 1%. Measuring the changes in mobility alone is not sufficient for understanding the changes in transmission dynamics triggered by public health measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Germany/epidemiology , Humans , Pandemics , Surveys and Questionnaires
4.
Epidemics ; 36: 100481, 2021 09.
Article in English | MEDLINE | ID: covidwho-1272411

ABSTRACT

We measured contact patterns using online diaries for 304 employees of 3 U.S. companies working remotely. The median number of daily contacts was 2 (IQR 1-4); majority were conversation (55 %), occurred at home (64 %) and lasted >4 h (38 %). These data are crucial for modeling outbreak control among the workforces.


Subject(s)
COVID-19 , Pandemics , Disease Outbreaks , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL